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a b s t r a c t

While wind and solar have been the leading sources of renewable energy up to now, waves are
increasingly being recognized as a viable source of power for coastal regions. This study analyzes inte-
grating wave energy into the grid, in conjunction with wind and solar. The Pacific Northwest in the
United States has a favorable mix of all three sources. Load and wind power series are obtained from
government databases. Solar power is calculated from 12 sites over five states. Wave energy is calculated
using buoy data, simulations of the ECMWF model, and power matrices for three types of wave energy
converters. At the short horizons required for planning, the properties of the load and renewable energy
are dissimilar. The load exhibits cycles at 24 h and seven days, seasonality and long-term trending. Solar
power is dominated by the diurnal cycle and by seasonality, but also exhibits nonlinear variability due to
cloud cover, atmospheric turbidity and precipitation. Wind power is dominated by large ramp events
eirregular transitions between states of high and low power. Wave energy exhibits seasonal cycles and is
generally smoother, although there are still some large transitions, particularly during winter months.
Forecasting experiments are run over horizons of 1e4 h for the load and all three types of renewable
energy. Waves are found to be more predictable than wind and solar. The forecast error at 1 h for the
simulated wave farms is in the range of 5e7 percent, while the forecast errors for solar and wind are 17
and 22 percent. Geographic dispersal increases forecast accuracy. At the 1 h horizon, the forecast error for
large-scale wave farms is 39e49 percent lower than at individual buoys. Grid integration costs are
quantified by calculating balancing reserves. Waves show the lowest reserve costs, less than half wind
and solar.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

While wind and solar have been the leading sources of renew-
able energy up to now, waves are increasingly being recognized as a
viable source of power for coastal regions [1,2]. One of the major
issues in integrating renewable energy into the grid is short-term
forecasting. In the electric power industry, forecasts are used in
operational planning, peak load matching, switching sources and
planning for reserve usage, i.e., buffering against the uncertainty
caused by deviations between supply and demand, and deviations
between supply and forecasts. The horizons range from as little as a
few minutes to several hours, but are typically short. This study
analyzes integrating wave energy into the power grid, in conjunc-
tion with wind and solar. The goal is to quantify the relative costs
associated with all three types of renewable energy.
The Pacific Northwest in the United States has a favorable mix of
all three sources, as well as robust data sets. Load and wind power
are published by the Bonneville Power Administration (BPA).
Operating as a wholly-owned subsidiary of the U.S. Department of
Energy, BPA's service territory includes Idaho, Oregon, Washington,
and parts of Montana, California, Nevada, Utah and Wyoming. The
bulk of BPA's generating capacity is hydroelectric, but as of 2013,
some 4515 megawatts (MW) of wind capacity had been installed,
with an additional 2500 MW planned for 2015 [3].

Solar power development has been less extensive, but plans are
underway to install capacity in inland areas that have less precip-
itation and more continuous sunlight. Data sets for 25 solar sta-
tions, over five states, are publically available from the University of
Oregon's solar radiation measurement laboratory [4].

The wave energy on the outer continental shelf off the coasts of
Washington and Oregon has been estimated at 179 terawatts (TW)
in deep water and 140 TW closer to the coast, although it is likely
that only a fraction of this can be extracted [5]. A more realistic
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number for the wave energy that could be generated with existing
technologies is on the order of 500 MW. Data on the wave height
and period is available for several buoy sites from the National Data
Buoy Center, operated by the National Oceanographic and Atmo-
spheric Administration [6]. Wave parameters over wider areas are
simulated using the European Center for Medium-range Weather
Forecasts model (ECMWF, 2015).

The organization of this study is as follows. Section 2 reviews
the load, solar and wind data. The calculations for wave energy are
presented in Section 3. The forecasting methodology is set out in
Section 4. Forecasting tests and grid integration experiments are
run in Sections 5e6. Section 7 concludes.

2. The load, wind and solar power

The database was compiled for January 1, 2012 through
December 31, 2013, at an hourly resolution. The load, wind and
solar data were converted to hourly from the original 5 min and
15 min values. Table 1 gives the sources.

Fig. 1 shows the load over the three month period Januar-
yeMarch 2012. The load exhibits cycles at 24 h and 7 days, seasonal
cycles at 12 months, and a long-term trend associated with the
growth of the economy. The seasonal cycle peaks during the winter
months. The amplitude of the 7-day cycles varies from week to
week. There are occasional outliers, generally associated with
weather events.

BPA's wind generating capacity currently includes 43 sites, with
several more under development. Maps of operational and planned
installations are available at the BPA website [3]. The majority have
been located in the Columbia River gorge, with additional stations
along the Oregon coast and further inland. The averagewind power
in 2013 was 1218 MW, or 27 percent of capacity. Fig. 2 shows the
wind power series over the same three month interval. The most
prominent feature in wind is large ramp eventseirregular transi-
tions between states of high and low power.

Of the 25 solar data sets, many had extensive missing values.
Twelve sites which had complete observational records were used.
These include six in Oregon, three in Idaho, and one each in
Montana, Utah and Wyoming (see Table 1). Fig. 3 shows the loca-
tions on amap. The values for ground level irradiance are the global
horizontal component, in watts per meter squared (W/m2). All the
generation is assumed photovoltaic, so that the power can be
calculated as a ratio to irradiance. The ratio was set to 7.2 percent.

Irradiance reaching the ground is intermittent, due to the effects
of cloud cover, atmospheric turbidity and precipitation. However,
some of this variability can be mitigated by dispersing sites over
wide areas. The power calculations were run for the individual
sites, then aggregated and scaled up to simulate 500 MW of solar
power. Fig. 4 shows the combined solar power series. There is a
strong seasonal cycle in the solar data, which runs counter to the
seasonal cycle in the load: solar power peaks during the summer
months. The main feature at short horizons is the diurnal cycle.
While the aggregate series is much smoother than the data at in-
dividual sites, there is still evidence of nonlinear variability: the
amplitude of the cycle can change from day to day, while weather
events can result is large changes in power over intervals of a few
hours.

3. Calculating wave power

The primary source for the wave data is four buoys off the coasts
ofWashington and OregoneCape Elizabeth, the Columbia River Bar,
Stonewall Banks and Umpqua. Table 1 provides the buoy identifiers,
the latitude and longitude, the depth, the resolution, and the
number of usable values. The buoy data sets all include the
significant wave height (HSt), in meters, and the mean wave period
(TMt), in seconds. Fig. 3 shows the buoy locations. Figs. 5e6 show
the wave height and period at Cape Elizabeth. Missing values were
interpolated using ECMWF model simulations.

The ECMWF wave model is a third-generation physics-based
model [7]. Large-scale physics-based wave models have been in
operation since the 1960s, and have been updated repeatedly since
this time [8e12]. The ECMWF wave and atmospheric models have
been coupled since June 1998. In third-generation models of this
type, the major properties of the wave spectra are determined by
the action balance equation. Let N denote the wave action density,
equal to the energy density divided by the intrinsic frequency. Let t
denote time, and x, y denote distance in the Cartesian coordinates.
Let s denote the intrinsic frequency and g denote the wave prop-
agation direction. Let Cg denote the wave action propagation speed
in (x, y, s, g) space, and S denote the combined source and sink
terms. In deep water, the three major components of S are the input
by wind (SIN), nonlinear waveewave interactions (SNL) and wave
dissipation through white-capping (SWC). The action balance
equation can be expressed in the following form:

vN=vtþ vCg;xN
�
vxþ vCg;yN

�
vyþ vCg;sN

�
vsþ vCggN

�
vg ¼ S;

S ¼ ½ðSINÞ þ ðSNLÞ þ ðSWCÞ�
(1)

Since January 2010, the average resolution of the grids simulated
by the wave model has been 28 square km. Hourly data from the
short range forecasts were obtained from the ECMWF archive to
produce continuous time series at the four buoy locations. Model
fields were interpolated from the original grid to the buoy co-
ordinates using a bilinear method. The simulated parameters were
the significant wave height and the zero-crossing mean wave
period, which shows the closest correlation with the mean wave
period from the buoy data.

In most prior studies, thewave energy has been calculated using
the flux. Letting g denote the acceleration caused by gravity
(9.8086 m/s/s), and r denote the density of seawater (1025 kg/m3),
the flux (in kW/m) is given by:

EFt ¼
h�

g2r
.
64p

�
H2
StTMt

i
z0:491

�
H2
StTMt

�
(2)

Some recent studies have proposed simulating a generic con-
verter in which the power is proportional to the flux for lower
values of the wave height, but levels off above a given threshold
[13]. The procedure used here, however, is to calculate the power
flow from three types of wave energy converters (WECs), an
attenuator, a point absorber, and an oscillating device. There is an
important difference between these and the generic converter: the
wave energy is a nonlinear function of the wave height and period,
rather than the wave height squared, typically rising in proportion
to both parameters and then declining as a function of the period
[14].

The Pelamis P2 device is an offshore converter, operating in
depths greater than 50 m [15e18]. The machine consists of a series
of semi-submerged cylindrical sections linked by hinged joints.
The wave-induced motion causes hydraulic cylinders to pump
high pressure oil through motors driving electrical generators. The
Pelamis conversion matrix is given in Fig. 7. The maximum power
generated by the converter is 750 kW, at wave heights greater
than or equal to 5.5 m. The resolution of the matrix is 0.5 m for the
wave height and 0.5 s for the wave period. The matrix was
increased to a resolution of 0.1 m for the wave height, using linear
interpolations.

Performance matrices for several other WECs have recently
been published [19]. The floating heave buoy array is composed of



Table 1
The data.

Database and variables Units Location Resolution Elevation or depth, usable values

All data is for the period January 1, 2012 through December 31, 2013.

1] The load
Power load Megawatts BPA service area 5 min
Source: Bonneville Power Administration (BPA) website (http://transmission.bpa.gov/Business/Operations/Wind/).

2] Wind power Megawatts 43 wind farms 5 min
Source: Bonneville Power Administration (BPA) website (http://transmission.bpa.gov/Business/Operations/Wind/).

3] Solar
Ashland, OR Watts/m2 42.19 N, 122.71 W 15 min Elevation: 595 m
Burns, OR Watts/m2 43.52 N, 119.02 W 15 min Elevation: 1295 m
Challis, ID Watts/m2 44.45 N, 114.31 W 15 min Elevation: 1651 m
Dillon, MT Watts/m2 45.21 N, 112.62 W 15 min Elevation: 1590 m
Eugene, OR (two series) Watts/m2 44.05 N, 123.07 W 15 min Elevation: 150 m
Green River, WY Watts/m2 41.46 N, 109.44 W 15 min Elevation: 1000 m
Hermiston, OR Watts/m2 45.82 N, 119.28 W 15 min Elevation: 180 m
Moab, UT Watts/m2 38.58 N, 109.54 W 15 min Elevation: 1000 m
Picabo, ID Watts/m2 43.31 N, 114.17 W 15 min Elevation: 1472 m
Silver Lake, OR Watts/m2 43.31 N, 121.06 W 15 min Elevation: 1355 m
Twin Falls, ID Watts/m2 42.55 N, 114.35 W 15 min Elevation: 1200 m
Source: University of Oregon's solar radiation measurement laboratory (http://solardata.uoregon.edu).

4] Waves
NDBC 46041, Cape Elizabeth Wave height, meters

Wave period, seconds
47.35 N, 124.73 W Hourly Depth: 114.3 m

Usable values: 17,241
NDBC 46029, Columbia River bar Wave height, meters

Wave period, seconds
46.14 N, 124.51 W Hourly Depth: 135.3 m

Usable values: 10,941
NDBC 46050, Stonewall Banks Wave height, meters

Wave period, seconds
44.64 N, 124.53 W Hourly Depth: 128.1 m

Usable values: 17,491
NDBC 46229, Umpqua Wave height, meters

Wave period, seconds
43.77 N, 124.55 W 30 min Depth: 187.1 m

Usable values: 17,126
Waves: National Data Buoy Center: www.ndbc.noaa.gov
several heaving buoys connected to a submerged reference struc-
ture via a hydraulic system, which generates the electricity. In the
conversion matrix (Fig. 8), the number of buoys was limited to ten,
yielding a maximum power of slightly over 3600 kW. The floating
three-body oscillating flap device consists of hinged flaps, which
are all connected to a common frame. The matrix is given in Fig. 9.
The maximum power is 1665 kW.

A second issue in wave farm simulation is geographic dispersal.
Wave buoy data is known to show a great deal of localized noise.
Recent papers have determined that the variance is substantially
reduced whenmultiple converters are placed in the same area [20].
Fig. 1. The load, Bonneville Power Administration. Le
In this study, one converter is assumed to be located at the buoy
site, so that the actual data can be used. The other converters are
assumed to be deployed in a line and spaced roughly 150 m apart,
so that there are 34 converters for every 5 km interval. The data sets
for the locations other than the buoy are calculated by overlaying
noise processes on the ECMWF model simulations. To estimate the
noise process at the buoy site, the wave height and period data
were smoothed using a centered 6 h moving average. The
smoothed series were then subtracted from the actual data. The
wave height noise exhibits strong evidence of seasonality: the tails
are much thicker during the winter than during the summer. The
ft scale: MW. January 1, 2012 to March 31, 2012.

http://transmission.bpa.gov/Business/Operations/Wind/
http://transmission.bpa.gov/Business/Operations/Wind/
http://solardata.uoregon.edu
http://www.ndbc.noaa.gov


Fig. 2. Wind power, Bonneville Power Administration. Left scale: MW. January 1, 2012 to March 31, 2012.

G. Reikard et al. / Renewable Energy 81 (2015) 442e456 445
wave period noise is less seasonal, although there are more outliers
than in the standard normal.

Preliminary experiments for the wave noise were run using
draws from various probability distributions. No single distribu-
tion replicates the observed pattern in the wave height noise.
Instead, the preferred procedure was a blend of two distributions,
with heavier tails for the winter months. The noise processes that
most closely approximated the winter wave height were draws
from a Student-t distribution with 5 degrees of freedom. The wave
height during the summer months also shows somewhat heavier
tails than in the Gaussian normal. A student-t distribution with 29
degrees of freedom closely replicated the observed values. The
Fig. 3. The buoys and the solar stations. Tria
two noise series were then combined using seasonal weights. The
distribution with 29 degrees of freedom also worked well for the
wave period noise. Figs. 10e11 show simulated significant wave
height and period series for Cape Elizabeth. Comparing these with
the buoy data (Figs. 5e6), confirms that they have similar
properties.

Finally, to create the wave farm simulations, the buoy data
and the simulated HSt and TMt series were multiplied by the
coefficients in the converter matrices. The main forecasting tests
below are run for the 5 km wave farms, i.e., 34 converters.
However, in the grid integration tests, larger wave farms had to
be simulated. These were calculated by simulating additional
ngles: wave buoys. Squares: solar sites.



Fig. 4. Simulated solar power, 12 sites. Left scale: MW. January 1, 2012 to January 31, 2012.
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converters over wider areas, and combining the power series
at all four sites. To facilitate comparison, all the large wave
farms were normalized to an average hourly power output of
500 MW.

Figs. 12e14 show the power series from the larger wave farms
for the Pelamis, the heave buoy array and oscillating flap device.
There are some visible differences between the simulated series.
The Pelamis power series exhibits repeated transitions between
states of high and low power, although within a narrower range
than the other two converters. Even during the winter months, the
power rarely exceeds 1900 MW. By comparison, the power series
from the heave buoy array is considerably more volatile, with
intermittent large spikes, and greater variability even during states
Fig. 5. Significant wave height, Cape Elizabeth. Left s
of lower power. The series for the oscillating flap device is less
volatile than the heave buoy array but still shows irregular sharp
peaks, as well as fluctuations between states of low and interme-
diate power.
4. Forecasting methodologies

One issue that has arisen repeatedly in the wave literature is the
choice of physics-based versus time series models. Physics models
have been found to have good forecasting properties over longer
horizons for waves [21e25]. However, over short horizons, time
series models have often proven to be more accurate. Comparisons
of physics and statistical methods have found that the convergence
cale: Meters. January 1, 2012 to March 31, 2012.



Fig. 6. Mean wave period, Cape Elizabeth. Left scale: seconds. January 1, 2012 to March 31, 2012.
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point for waves, i.e., the horizon at which the two methods achieve
comparable degrees of accuracy, is about 6 h [26,27]. For solar, the
convergence time is probably shorter, on the order of 2 h [28,29].
The evidence on wind is limited, but time series models have
generally been preferred at short intervals [30,31]. Consequently,
Fig. 7. Conversion matrix for the Pelam

Fig. 8. Conversion matrix for the floating h
the power production forecasts for all three types of renewable
energy were run using time series models.

The basic model used here is regression with stochastic co-
efficients. Models of this type can capture a great deal of nonlinear
variability [32,33]. Let Yt denote a time series, let the resolution be
is P2 device. Power is in kilowatts.

eave buoy array. Power is in kilowatts.



Fig. 9. Conversion matrix for the floating three-body oscillating flap device. Power is in kilowatts.
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1 h, let u denominate a coefficient, and let the subscript t denote
time variation. The model is of the form:

lnYt ¼u0t þ u1t lnYt�1 þ u2t lnYt�2 þ u3t lnYt�3

þ u4t lnYt�4 þ εt; εt � P
�
0; y2t

� (3)

where P is the probability distribution and yt
2 is the residual vari-

ance. Additional lags can be used as needed, but the Akaike infor-
mation criterion favored limiting the lags to 4 h [34]. There was
little evidence of any diurnal cycle in the wave data.

Neural networks have often been the preferred forecasting
method for scientific time series. There is a vast literature on using
neural networks to predict renewable energy [35e43]. The system
architecture used here consists of a multilayer perceptron, trained
using a backpropagation algorithm. For the time series analyzed
below, the net was specified with three hidden layers, and one
direct connection. It was trained by epoch, i.e., a forward and
backward pass through all observations in the sample, rather than
by example, i.e., a pass over individual observations. The input and
bias weights were not retained from the previous period, but rather
were restarted at each time point, so that in effect the weights are
Fig. 10. Simulated significant wave height series, Cape Elizabe
time-varying. The inputs to the neural net were the same as in the
regressions.

When the data incorporate cycles at regular frequencies, as is
the case with the load and solar power, ARIMA-type models have
been found to be more effective than regressions on levels.
Following the notation of Box and Jenkins [44], let f(L) be the
autoregressive operator, represented as a polynomial in the lag
operator (L): f(L) ¼ 1 e f1L � … � fpLp. Let F(L) be the seasonal
autoregressive operator. Let q(L) be the moving average operator:
q(L)¼ 1þ q1Lþ…þ qqLq, andQ(L) be the seasonal moving average
operator. Let the superscript x denote the order of differencing, and
the superscript z denote the order of cyclical differencing. Let the
superscript f denote the cyclical frequency. For hourly data, f ¼ 24.
The model is then of the form:

ð1� LÞx
�
1� Lf

�z
lnYt ¼ ½qtðLÞQtðLÞ=ftðLÞFtðLÞ�εt (4)

The coefficients are again time-varying.
The forecasting experiments are set up as follows. The first 500

observations are used as a training sample. The power series are
then forecasted iteratively. In each instance, the models are
th. Left scale: Meters. January 1, 2012 to March 31, 2012.



Fig. 11. Simulated mean wave period series, Cape Elizabeth. Left scale: seconds. January 1, 2012 to March 31, 2012.
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estimated over prior values, forecasted, then re-estimated over the
most recent value, etc. All the predictions are true out-of-sample
forecasts, in that they use only data prior to the start of the fore-
cast horizon. All the intervening periods are omitted. In otherwords,
for horizon tþ 2, the forecasts for tþ 1 are excluded. Themeasure of
forecast accuracy reported is the mean absolute percent error.

Time-varying parameter regressions can be estimated either
using a Kalman filter [45] or a moving window. With an unre-
stricted Kalman filter, the coefficients behave as a random walk.
This was found to impart too much volatility to the forecast values,
reducing predictive accuracy. The choice is therefore between
imposing restrictions on the filter, or varying the width of the
moving window [46]. Several preliminary experiments were run. In
most of the tests below, a width of 480 h is used.
Fig. 12. Large wave farm simulation, Pelamis. Left s
5. Forecasting tests: initial findings

Table 2 presents the forecast error for the three types of
renewable energy, the load and the net power, i.e., the load less the
supply fromwind, waves and solar. The tests are run for horizons of
1e4 h, although the main interest is the 1 h horizon. Table 3 reports
the estimated coefficients.

5.1. Waves

The model is a regression on lags (Equation (3)). The neural
network was also used for waves, but the results were extremely
similar, so only the regression is reported. The forecasts were run
both for the individual buoys, the 5 km wave farms, and the larger
cale: MW. January 1, 2012 to March 31, 2012.



Fig. 13. Large wave farm simulation, heave buoy array. Left scale: MW. January 1, 2012 to March 31, 2012.
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500 MW wave farms combining all four sites, for each type of
device.

At Cape Elizabeth, the errors for the 5 km wave farm at the 1 h
horizon range from 6.5 to 8.7 percent. At the Columbia River Bar,
they range from 6.2 to 8.3 percent. At Stonewall Banks, they range
from 6.2 to 8.5 percent. At Umpqua, they range from 6.3 to 8.6
percent. The heave buoy array shows the smallest errors, while the
errors for the Pelamis and the oscillating flap device are usually
fairly similar.

Averaging the four sites, the Pelamis shows errors of 10.2
percent for the individual buoys. This falls to 7.8 percent for the
5 km wave farms, and 5.9 percent when the four sites are com-
bined. The forecast error is 23 percent lower at the 5 km wave
Fig. 14. Large wave farm power simulation, oscillating flap de
farm than at the buoy, and 40 percent lower at the large wave
farm.

The results for the heave buoy array show an even larger pro-
portional improvement. The errors for the individual buoys average
11.08 percent. This declines to 6.3 percent at the 5 km wave farms,
an improvement of 43 percent, and 5.2 percent at the combined
wave farm, a reduction in the forecast error of 49 percent.

The oscillating flap device shows an average error of 11.44
percent for the individual buoys, and 8.54 percent for the 5 km
wave farms, a proportional improvement of 25 percent. The error
for the combined wave farm is 6.95 percent, or 39 percent lower
than at the individual buoy sites.

As the horizon extends, the forecast errors increase, but the
effects of geographic dispersal are still substantial. At 4 h, the
vice. Left scale: MW. January 1, 2012 to March 31, 2012.
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improvement in accuracy from the 5 kmwave farms relative to the
buoys is 28 percent for the Pelamis, 29 percent for the heave buoy
array, and 22 percent for the oscillating flap device. The improve-
ment from the combined wave farm relative to the buoys is 45
percent for the Pelamis, 43 percent for the heave buoy array, and 38
percent for the oscillating flap device.

5.2. Wind

The model for wind is also a regression, on three lags. Several
other methods were also tried, including neural network and state
transition models [47,48]. However, these failed to generate any
improvement in accuracy with this data set. At the 1 h horizon, the
Table 2
The forecast errors. Figures are the mean absolute percent error.

Variable 1 h

Waves
Cape Elizabeth, 5 km wave farm, Pelamis 8
Cape Elizabeth, 5 km wave farm, heave buoy array 6
Cape Elizabeth, 5 km wave farm, oscillating flap device 8
Cape Elizabeth, buoy, Pelamis 12
Cape Elizabeth, buoy, heave buoy array 10
Cape Elizabeth, buoy, oscillating flap device 12

Columbia, 5 km wave farm, Pelamis 6
Columbia, 5 km wave farm, heave buoy array 6
Columbia, 5 km wave farm, oscillating flap device 8
Columbia, buoy, Pelamis 10
Columbia, buoy, heave buoy array 9
Columbia, buoy, oscillating flap device 11

Stonewall, 5 km wave farm, Pelamis 8
Stonewall, 5 km wave farm, heave buoy array 6
Stonewall, 5 km wave farm, oscillating flap device 8
Stonewall, buoy, Pelamis 12
Stonewall, buoy, heave buoy array 11
Stonewall, buoy, oscillating flap device 13

Umpqua, 5 km wave farm, Pelamis 8
Umpqua, 5 km wave farm, heave buoy array 6
Umpqua, 5 km wave farm, oscillating flap device 8
Umpqua, buoy, Pelamis 12
Umpqua, buoy, heave buoy array 12
Umpqua, buoy, oscillating flap device 14

Four sites combined, 500 MW wave farm, Pelamis 5
Four sites combined, 500 MW wave farm, heave buoy array 5
Four sites combined, 500 MW wave farm, oscillating flap device 6

Wind
BPA Wind power series 22

Solar
Ashland, OR 63
Burns, OR 65
Challis, ID 51
Dillon, MT 53
Eugene, OR 49
Eugene, OR (second series) 52
Green River, WY 62
Hermiston, OR 60
Moab, UT 58
Picabo, IA 46
Silver Lake, OR 61
Twin Falls, ID 44
All solar sites combined 16

Power load and net power
Load 0
Net power (load less wind) 2
Net power (load less solar) 1
Net power (load less waves)
Pelamis 1
Heave buoy array 1
Oscillating flap device 1

Notes: All series denominated in MW. The forecasts at 1e4 h horizons are run using dat
hours only. All other calculations are for all time points.
best model for the wind power series shows an error of 22 percent.
Forecast accuracy deteriorates sharply as the horizon extends. By
4 h, the wind error has increased to 76 percent.

5.3. Solar

There is an extensive literature on forecasting solar power using
time series models [49,50]. The preferredmethod for this data set is
an ARIMA (3,0,0) (2,1,0), i.e., three proximate lags, differencing at
24 h, and five lags corresponding to the 24 h cycle. As with waves,
the forecast errors are reported both for the individual sites and for
all sites combined. The errors are for daylight hours only; nighttime
hours are excluded. At the individual sites, the errors range from a
2 h 3 h 4 h

.32 10.78 14.42 16.05

.54 8.77 11.28 13.98

.74 11.76 14.93 17.31

.01 15.19 18.44 21.59

.92 13.62 16.21 18.75

.95 16.11 18.33 22.19

.64 8.61 11.68 12.67

.23 8.44 11.61 12.81

.32 11.38 14.24 16.95

.18 13.49 16.58 19.41

.62 12.27 14.64 16.88

.51 14.88 17.91 20.66

.16 10.62 13.21 15.75

.22 8.43 10.69 12.78

.49 11.27 14.08 16.72

.85 15.86 18.96 21.89

.76 14.29 16.93 19.34

.23 16.14 19.11 21.93

.19 10.53 13.06 15.84

.31 8.45 10.13 12.74

.61 11.36 14.14 16.91

.91 15.75 18.81 21.71

.04 14.65 17.15 19.58

.06 17.11 19.98 22.67

.86 7.65 9.56 11.54

.18 6.72 8.49 10.72

.95 9.01 11.21 13.42

.09 42.16 58.13 77.25

.35 83.56 100.83 102.45

.83 87.78 106.34 108.92

.27 65.77 81.78 85.19

.54 71.72 77.65 78.36

.91 68.51 73.38 74.29

.11 82.35 111.64 113.52

.58 85.24 89.85 91.82

.15 86.57 115.36 116.12

.27 72.04 86.45 88.21

.52 62.86 70.19 71.79

.94 78.06 84.57 89.91

.01 56.75 61.48 63.59

.98 23.15 30.20 31.35

.95 1.72 2.32 2.73

.85 7.41 9.35 10.78

.88 2.96 3.79 4.39

.21 2.06 2.74 3.26

.36 2.24 2.96 3.47

.29 2.18 2.91 3.45

a at a 1 h resolution. All calculations for solar, including net power, are for daylight



Table 3
The model coefficients. Figures are regression coefficients. All coefficients are statistically significant at the 1 percent level or better.

RHS variable Aggregate load Solar Wind Waves (Pelamis) Waves (heave buoy array) Waves (oscillating flap device)

Constant e e 0.19 0.04 0.05 0.05
Lag, 1 h 1.45 0.98 1.43 0.84 0.85 0.82
Lag, 2 h �0.61 �0.04 �0.54 0.33 0.29 0.31
Lag, 3 h 0.11 �0.07 0.13 0.20 0.01 0.02
Lag, 4 h e e �0.05 �0.31 �0.19 �0.18
Lag, 24 h �0.54 0.52 e e e e

Lag, 48 h �0.49 0.45 e e e e

Lag, 72 h �0.39 e e e e e

Lag, 96 h �0.34 e e e e e

Lag, 120 h �0.29 e e e e e

R-bar-square 0.991 0.994 0.963 0.989 0.987 0.995

Notes: the models for the load, wind and waves are run on natural logarithms, the model for solar is run on levels. The equations for the aggregate load and the solar power
simulation are specified as ARIMA (5,0,0) (2,1,0) and ARIMA (3,0,0) (2,1,0), i.e., a regression on five or three proximate lags and two cyclical lags, in 24 h differences. Themodels
for wind and waves are regressions on levels.

Fig. 15. The load forecast error. Left scale: MW. Forecast horizon: 1 h. January 1,2013 to March 31,2013.

Fig. 16. The wind power forecast error. Left scale: MW Forecast horizon: 1 h. January 1, 2013 to March 31, 2013.
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Fig. 17. The solar power forecast error. Left scale: MW. Forecast horizon: 1 h. January 1, 2013 to March 31, 2013.
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minimum of 44 to a maximum of 72 percent at 1 h. The error in-
creases sharply over 2e3 h, but then begins to level off around 4 h.
Geographic dispersal does achieve a substantial improvement in
predictability. The error for all the sites combined is 17 percent,
increasing to 30.2 at 3 h and 31.3 percent at 4 h.

5.4. Load and net power

The load is forecasted using a two-stage model. The first is an
ARIMA (3,0,0) (5,1,0), i.e., three proximate lags and lags over five
24 h intervals. In the second stage, the ARIMA forecast is used as an
input in a neural network [51]. The forecast error for the load is very
small, 0.95 percent at 1 h, rising to 2.73 percent at 4 h.

The forecasts for the net power use separate equations for the
load and the renewable energy series. The net power associated
with wind is substantially less predictable than the load: the error
at 1 h is 2.85 percent, rising to over 10 percent at 4 h. The net power
Fig. 18. The wave power forecast error, Pelamis. Left scale: MW
falls sharply during periods of high wind speed, when wind power
approaches 40 percent of the load, but can rise just as rapidly when
the wind dies down.

The net power errors associated with solar and waves are much
smaller. However, these values are not strictly comparable to wind
due to differences in scale (at 500 MW each, the mean wave and
solar energy are less than half the mean wind energy of 1218 MW).
The net power error for solar is 1.88 percent at 1 h and 4.39 percent
at 4 h. For the three large wave farms, the net power errors are 1.21
for the Pelamis, 1.36 percent for the heave buoy array and 1.29
percent for the oscillating flap device. These increase to 3.24, 3.37
and 3.45 percent at 4 h.

While the mean absolute percent error is a widely-accepted
gauge of model accuracy, the distribution of the error is also of in-
terest. Figs. 15e20 present the errors for the load, wind, solar and
waves, over a period of three months. The equation for the load
tracks quite closely, with the error usually lower than 100 MW, and
. Forecast horizon: 1 h. January 1, 2013 to March 31, 2013.



Fig. 19. The wave power forecast error, heave buoy array. Left scale: MW. Forecast horizon: 1 h. January 1, 2013 to March 31, 2013.
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rarely exceeding 200 MW (2e3 percent of the load during the same
interval). The wind forecast error shows much greater intermit-
tency. The model alternates between periods of high accuracy and
periods in which it goes seriously off, with errors in the range of
several hundred MW. The solar power error also shows some
intermittency, although it is considerably smaller than the wind
error. The most interesting results are for waves, where the error is
strongly seasonal. Thewave error alternates among twomain states.
During the summer, the error is quite small. During the winter, the
average error is higher, with occasional extreme outliers.

6. Reserve calculations

At BPA, there are three types of reserves. Regulation reserves
cover differences between the supply and load within 10 min in-
tervals, following reserves apply from one 10 min period to the
Fig. 20. The wave power forecast error, oscillating flap device. Left sca
next, while balancing reserves cover imbalances between forecast
and supply at the 1 h horizon, with a 99.5 percent reliability
requirement [3]. Capacity-up reserves are reserves associated with
a deficit of energy relative to forecast. Capacity-down reserves are
reserves associated with a surplus. The Federal Energy Regulatory
Center (FERC) has also mandated 15 min transmission scheduling
to assist in integrating variable sources [52]. Unfortunately, wave
data is not available at the 15 min resolution. Consequently, the
reserve calculations were run for the 1 h horizon.

Table 4 shows the reserves associated with the load, and
each of the renewable energy sources, for the overall period,
January 1, 2012 through December 31, 2013. However, reserves
are not independent of scale, so the values are also expressed as a
percent of power. For capacity down reserves, normally
expressed as a negative number, the ratio is calculated using the
absolute value.
le: MW. Forecast horizon: 1 h. January 1, 2013 to March 31, 2013.



Table 4
Balancing reserves. Statistics are the mean absolute value of reserves, and reserves as a percent of power.

Site and converter Capacity up Capacity down

Reserves (MW) Reserves % of Power Reserves (MW) Reserves/Power Reserves % of Power

Aggregate load 58.98 0.93 �58.89 0.99
Wind (44 sites) 161.24 16.3 �94.54 37.1
Solar (12 sites) 67.06 15.2 �67.14 15.7
Waves (four sites)
Pelamis 28.67 5.6 �25.32 5.9
Heaving converter 30.96 4.9 �26.63 5.2
Oscillating flap device 35.57 6.5 �31.67 7.3

Notes: average wind power is 1218 MW. Average solar and wave power is 500 MW.
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For the aggregate load, both capacity-up and capacity-down re-
serves average 59 MW, or slightly less than 1 percent of the power.

For wind, capacity-up reserves are as high as 161 MW, or 16
percent of power, while capacity-down reserves are estimated
at�94MW, or 37 percent of power. The asymmetry in the numbers
and the ratios e higher reserves, lower ratios to power – is
explained by the fact that surpluses occur primarily during periods
of low wind power, typically when wind is ramping up, while
deficits occur more often during periods of high wind power, when
wind power is ramping down.

For solar, both capacity-up reserves and capacity-down reserves
are in the range of 67 MW. Both values are in the range of 15e67
percent of power, comparable to capacity-up reserves for wind.

For waves, capacity-up reserves range from as little as 28.7 MW
for the Pelamis to 31 MW for the heaving converter and 36 MW for
the oscillating flap device. Expressed as ratios to power, these
values are 5.6, 4.9 and 6.5 percent, much smaller than for wind and
solar. Capacity-down reserves are even lower, �25.3, �26.3
and �31.7 MW for the three types of devices. The ratios to power
are 5.9, 5.2 and 7.3 percent respectively.

7. Conclusions

Two conclusions emerge from this analysis. First, geographic
dispersal of renewable energy generators tends to average out the
localized noise, making the power easier to forecast. This is true for
both waves and solar. One further implication of this finding is that
physics-based wave models may be uniquely well-suited to wave
farm simulation. Comparisons of physics model hindcasts with
individual buoy data have generally found that the models produce
much smoother values for the wave parameters [53,54]. However,
since wave farms will be more dispersed than individual buoys,
physics model hindcasts can be used to reproduce the wave pa-
rameters over wider areas.

Second, wave power remains much easier to forecast than either
wind or solar. For wind power, the main issue for the forecaster is
anticipating the large ramp events. For solar energy, the main
problems are cloud cover and precipitation. While the wave energy
flux can be extremely volatile, the power output fromwave farms is
smoother and more predictable. The main cause is geographic
dispersal, but a second factor is that the converters cut off energy
above a given threshold, mitigating the impact of extreme fluctu-
ations. When the costs are expressed in terms of reserves, waves
are far less expensive than other forms of renewable energy. The
findings argue strongly for the development of wave energy at
coastal locations.
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